linefinder.analyze_data.worldline_set module¶
Tools for loading in multiple worldline data sets, for comparison
@author: Zach Hafen @contact: zachary.h.hafen@gmail.com @status: Development
-
class
linefinder.analyze_data.worldline_set.
WorldlineSet
(defaults, variations)[source]¶ Bases:
verdict.Dict
Container for multiple Worldlines classes. The nice thing about this class is you can use it like a Worldlines class, with the output being a dictionary of the different sets instead.
-
apply
(fn, *args, **kwargs)¶ Apply some function to each item in the smart dictionary, and return the results as a Dict.
-
array
()¶ Returns a np.ndarray of values with unique order (sorted keys )
-
call_custom_kwargs
(kwargs, default_kwargs={}, verbose=False)¶ Perform call, but using custom keyword arguments per dictionary tag.
Parameters: Returns: Dictionary of results.
Return type: results (dict)
-
call_iteratively
(args_list)¶
-
depth
(level=1)¶ Depth of the Dict.
Parameters: level (int) – A level of N means this Dict is contained in N-1 other Dict.
-
classmethod
from_class_and_args
(contained_cls, args, default_args={})¶ Alternate constructor. Creates a Dict of contained_cls objects, with arguments passed to it from the dictionary created by defaults and variations.
Parameters: - contained_cls (type of object/constructor) – What class should the smart dict consist of?
- args (dict/other) – Arguments that should be passed to contained_cls. If not a dict, assumed to be the first and only argument for the constructor.
- default_args – Default arguments to fill in args
Returns: The constructed instance.
Return type: Dict
-
classmethod
from_hdf5
(filepath, load_attributes=True, unpack=False)¶ Load a HDF5 file as a verdict Dict.
Parameters: - filepath (str) – Location to load the hdf5 file from.
- load_attributes (boolean) – If True, load attributes stored in the hdf5 file’s .attrs keys and return as a separate dictionary.
- unpack (boolean) – If True and the inner-most groups are combined into a condensed DataFrame/array-like format, unpack them into a traditional structure.
-
classmethod
from_tag_expansion
(defaults, tag_expansion)[source]¶ Create a worldline set using a bash-style expansion for the variations.
Parameters: Returns: worldline_set (WorldlineSet instance)
-
get
(k[, d]) → D[k] if k in D, else d. d defaults to None.¶
-
inner_item
(item)¶ When Dict is a dictionary of dicts themselves, this can be used to get an item from those dictionaries.
-
inner_keys
()¶
-
items
() → a set-like object providing a view on D's items¶
-
keymax
()¶
-
keymin
()¶
-
keys
() → a set-like object providing a view on D's keys¶
-
keys_array
()¶ Returns a np.ndarray of keys with unique order (sorted keys )
-
log10
()¶ Wrapper for np.log10
-
median
()¶
-
nanmedian
()¶
-
nanpercentile
(q)¶
-
percentile
(q)¶
-
plot_classification_bar_same_axis
(kwargs=<object object>, ind=0, width=0.5, data_order=<object object>, legend_args=<object object>, y_label='Classification Fraction', out_dir=None, save_file='bar_map.pdf', **default_kwargs)[source]¶
-
remove_empty_items
()¶ Look for empty items and delete them.
-
split_by_dict
(d, return_list=False)¶ Break the smart dictionary into smaller smart dictionaries according to their label provided by a dictionary
Parameters:
-
split_by_key_slice
(sl, str_to_match=None)¶ Break the smart dictionary into smaller smart dictionaries according to a subset of the key.
Parameters:
-
store_quantity
(output_filepath, quantity_method='get_categories_selected_quantity_fraction', variations=None, verbose=True, *args, **kwargs)[source]¶ Iterate over each Worldlines class in the set, obtaining a specified quantity and then saving that to an .hdf5 file. Note that verdict.Dict’s to_hdf5 method is simpler and more functional for many cases.
Parameters: - output_filepath (str) – Full path to store the output at.
- quantity_method (str) – What method to use for getting the quantity out.
- variations (dict) – If provided, we get different quantities from each Worldlines instance by passing different args to quantity_method according to variations. kwargs is taken as the default arguments when none are specified.
- **kwargs (*args,) –
Arguments to be passed to quantity_method.
-
store_redshift_dependent_quantity
(output_filepath, max_snum, choose_snum_by='pulling_from_ids', *args, **kwargs)[source]¶ Store a redshift dependent quantity. In particular, this method assumes that the differences between the Worldlines is a redshift difference, and that the label for each Worldlines class contains the relevant snapshot number. It then parses the label for that snapshot number, and passes it to store_dependent_quantity as a key.
Parameters: - output_filepath (str) – Where to save the output data.
- max_snum (int) – Maximum snapshot number the snapshots can go to. Used for parsing the label as well as specifying the ind.
- choose_snum_by (str) – How to to vary the snapshot used when the arguments are passed to the Worldlines.
- **kwargs (*args,) –
Arguments passed to self.store_dependent_quantity()
-
sum_contents
()¶ Get the sum of all the contents inside the Dict.
-
to_df
()¶ Join the innermost Dict classes into a pandas DataFrame, where the keys in the innermost dictionaries are the index and the keys for the innermost dictionaries are the column headers.
-
to_hdf5
(filepath, attributes=None, overwrite_existing_file=True, condensed=False)¶ Save the contents as a HDF5 file.
Parameters: - filepath (str) – Location to save the hdf5 file at.
- attributes (dict) – Dictionary of attributes to store as attributes for the HDF5 file.
- overwrite_existing_file (boolean) – If True and a file already exists at filepath, delete it prior to saving.
- condensed (boolean) – If True, combine the innermost dictionaries into a condensed DataFrame/array-like format.
-
transpose
()¶
-
values
() → an object providing a view on D's values¶
-